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STABILITY CHARACTERISTICS OF TWO MISSILES OF FINENESS

RATIOS 12 AND 18 WITH S_X RECTANGULAR FINS OF

VERY LOW ASPECT RATIO OVER A MACH NUMBER

RANGE OF 1.4 TO 5.2*

By Allen B. Henning

SUMMARY

Two rocket-propelled missiles have been test flown by the Langley

Pilotless Aircraft Research Division in order to study the stability

characteristics of a body with six rectangular fins of very low aspect

ratio. The fins, which had exposed aspect ratios of approximately 0.04

and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18,

respectively. Each body had a nose with a fineness ratio of 5.5 and a

cylindrical afterbody. The body and the fin chord of the model having

a fineness ratio of 12 were extended the length of 6 body diameters

to produce the model with a fineness ratio of 18. The missiles were

disturbed in flight by pulse rockets in order to obtain the stability

data. The tests were performed over a Mach number range of 1.4 to 3.2

and a Reynolds number range of 2 x 106 to 21 × 106 .

The results of these tests indicate that these configurations with

the long rectangular fins of very low aspect ratio showed little induced

roll, with the missile of highest fineness ratio and longest fin chord

exhibiting the least amount. Extending the body and fin chord of the

shorter missile six body diameters and thereby increasing the fin area

approximately ll5 percent increased the lift-curve slope based on body

cross-sectional area approximately 40 to 55 percent, increased the

dynamic stability by a substantial amount, and increased the drag from

14 to 33 percent throughout the comparable Mach number range. The

center-of-pressure location of both missiles remained constant over

the Mach number range.

Title, Unclassified.
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INTRODUCTION

Wings of medium aspect ratio or stabilizing fins have been used to

provide the necessary aerodynamic forces required for maneuvering flight

for most of the guided missiles. In order to reduce the frontal packaging

size and make a more compact missile, the use of fins of very low aspect
ratio has been considered. Wind-tunnel studies have been conducted on

wing-body combinations wlthwings of very low aspect ratio in reference I,

on combinations of bodies and wings of low aspect ratio in reference 2,

and on missiles with low-span longitudinal strips placed along the body

in reference 3. To investigate the presence and the degree of induced

roll on winged configurations of low aspect ratio a study has been con-

ducted by the Langley Pilotless Aircraft Research Division on rocket-

propelled free-fllght configurations having either highly sweptwings,

flared skirts, or rectangular wings.

An investigation of the stability characteristics of two configura-

tions, each employing six rectangular fins of very low aspect ratio on

a cylindrical afterbody, is reported herein. The two rocket-propelled

free-flight missiles had body fineness ratios of 12 and 18, with exposed-

fin aspect ratios of 0.04 and 0.02 per fin 3 respectively.

The two missiles were test flown in a Math number range of 1.4

to 3.2 and a Reynolds number range of 2 × l06 to 21 x l06 at the

Pilotless Aircraft Research Station at Wallops Island, Va.

SYMBOLS

All coefficients are based on the body cross-sectional area and

the body diameter.

aN

aT

@

b

C

Cy

normal acceleration, g units

transverse acceleration, g units

body cross-sectional or frontal area, 0.267 sq ft

total fin span, ft

fin chord, ft

normal-force coefficient

side-force coefficient



CR

CX

Cm

Cn

CN_, CNz__

resultant-force coefficient

longitudinal-force coefficient

pitching-moment coefficient

yawing-moment coefficient

normal-force-curve slope,
8CN

or

8c N
, per deg

side-force-curve slope,
3Cy

or per deg

3

Cmq

Cm_

_C m
pitch-damping derivative,

@a

static stability derivative,

CDmin

d

g

I

I X

Z

M

m

P

Pay

q

r

minimum drag coefficient

body diameter, 0.585 ft

acceleration due to gravity, ft/sec 2

moment of inertia about Y- or Z-axis, slug-ft 2

moment of inertia about X-axis, slug-ft 2

body length, ft

Mach number

mass, slugs

rolling velocity, radians/sec

average period of oscillation, sec

dynamic pressure, ib/sq ft

nose-coordinate radius, in.
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Reynolds number per foot

time, sec

velocity, ft/sec

distance along body measured from nose, in. or ft

body coordinate axis

angle of attack, deg

angle of sideslip_ deg

time rate of change of angle of attack_ radians/sec

time rate of change of angle of sideslip, radians/sec

angle of attack from integration of

angle of sideslip from integration of

pitching velocity_ radians/sec

yawing velocity, radians/sec

rolling velocityj radians/sec

pitching acceleration, radians/sec 2

yawing acceleration_ radians/see 2

basic oscillation frequency_ radians/sec

nonrolling damping constant, i/sec

damping constant due to roll_ i/sec

component of total pitch frequency resulting directly

from roll, radians/sec

Subscript :

c.g. center of gravity

A dot over a symbol indicates the first derivative with respect

to time. Two dots indicate the second derivative.

&



MODELS

Sketches of the two test missiles showing configuration character-

istics and dimensions are presented in figure i_ and photographs of these

missiles are shown in figure 2. Also presented in figure i are the geo-
metric and mass characteristics for both missiles. The coordinates for

the nose section are presented in table I.

The two missiles (referred to herein as model i and model 2) were

constructed of aluminum alloy, and each had a nose with a fineness ratio

of 3.9 and a straight cylindrical afterbody. Six rectangular, thin3

aluminum-alloy fins of very low aspect ratio were welded to the cylin-

drical afterbody. Model i had a body length of 12 diameters_ a fin chord

of 5.14 body diameters, and a total fin span of 1.44 body diameters.

Model 2 was similar; except that the body and fin chord lengths were
increased 6 diameters to a fineness ratio of 18 and a fin chord of

11.14 body diameters.

The models were disturbed in flight by six pulse rockets that were

placed around the body midway between each adjacent pair of fins and

positioned to fire in such a direction as to place their lines of thrust

through the center line of the model. The longitudinal location of the

pulse rockets was near the rear of model i and approximately 9/6 the

length of the body from the nose of model 2.

A scale model of model i; shown in figure 3, was flown in conjunc-

tion with this investigation in order to obtain drag data for the pre-

liminary calculations. This scale model was tested by the helium-gun

technique described in detail in reference 4.

INSTRD%_KNTATION AND TESTS

The two models used in this investigation had the same instrumenta-

tion. Seven instruments; of which three were accelerometers; three were

rate gyros; and one was a pressure cell; measured the normal acceleration_

lateral acceleration, longitudinal acceleration_ rate of pitch, rate of

yaw, rate of roll, and total pressure. The flight data measured by the

instruments were relayed from the model to the ground station by the

standard NACA telemetering system.

Each model was propelled to flight-test velocity by a Nike booster

rocket motor. A photograph of the model-booster combination mounted on

the launcher prior to firing is presented in figure 4. After burnout of

the booster; the model and the booster separated from each other because

of the difference in the drag-to-weight ratios. Velocity and flight-path
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data were obtained from CW Doppler radar and SCR 584 tracking radar,

respectively. The maximum Mach number obtained by models i and 2 was

5.54 and 5.03, respectively. Atmospheric data were obtained from a rawin-

sonde sent aloft with a balloon immediately after each test flight. The

Reynolds numbers and dynamic pressures obtained throughout these test

flights are presented in figure 5.

The six pulse rockets were programmed to fire in a timed sequence

after the model-booster separation. The first two were fired in suc-

cession in the vertical plane the second two in a plane inclined 60 °

to the right of vertical, and the third two in a plane inclined 60 ° to

the left of vertical when referenced from the rear of the model. The

resulting programming gave six disturbances from the pulse rockets and

one disturbance from the model-booster separation, or seven disturbances

or pulses throughout the test Mach number range. Hereafter, these pulses

are referred to as separation pulse, first pulse_ second pulse, and so

forth.

ACCURACY

The systematic errors of the measured quantities caused by the

instrument inaccuracies are given in the following table in coefficient

form for the forces involved and in radians per second for the rate meas-

urements. The errors are given as incremental errors, and the tabulated

coefficients are based on the body cross-sectional area.

Model i Model 2

Quantity

CN

Cy

CX

M = 2.O M = 3.O

-+0.144 _+0.026

_+.144 +. 026

+.096 + .018

+.4 _+.4

+.4 -+.4

+i. 2 +i. 2

M = 2.0 M = 3.0

+0.106 +0.029

+.lO6 -+.o29

_+,053 +.o15

_+,4 +.4

-+,4 _+,4

+I. 2 +i. 2

The random errors are much smaller than these tabulated systematic errors

and may be determined by the scatter of the data. In the calculation of

dCm dCn the systematic, random, and other errors
CN2_ , CyA_, dTN, and dCy
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introduced during the integration and differentiation processes are

lessened and perhaps cancelled out when the slope is determined. The

errors in Mach number and dynamic pressure are on the order of ±i percent.

PRESENTATION OF DATA AND METHOD OF ANALYSIS

The body axes coordinate system is used in analyzing the data

obtained from the flight tests of the two models. This axes system is

shown in figure 6. Also included in figure 6 is the sign convention

showing the positive directions of the various quantities used herein.

The time histories of models i and 2 are shown in figures 7 and 8

for each pulse-rocket and booster-separation disturbance. The variation

with time of the normal- and side-force coefficients; the pitch, yaw,

and roll rate; and the Mach number, along with a cross plot of the normal-

and the side-force coefficients are presented in these figures. The data

plotted herein were continuously measured and recorded throughout the

flight and read at intervals of 0.01 second, but in order to permit

easier reading of the figures only the faired values of the measured

quantities are shown.

In analyzing the data obtained from the instruments of the flight

models, the following applications were used: (i) The norms_l-force-

and side-force-curve slopes were determined from the pitch and yaw rates,

(2) The pitching-moment and the yawing-moment coefficients were calcu-

lated from the pitch and yaw rates, and (3) The static and dynamic sta-

bility derivatives were computed from the cross plots of the normal-

force and side-force coefficients (ref. 5).

The rates of pitch and yaw, along with the normal and transverse

accelerations, were used to calculate the time rate of change of angle

of attack and the time rate of change of angle of sideslip. These rela-

tionships were determined thusly;

a--6 "g-
V

and

g

: -@ + aTc.g. +

V
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CN Cy

where _ and _ are approximated by CN_ and -PC-_' respectively, by

using theoretical calculations for CN_ and Cy_. The _ and _ curves

were plotted against time and then integrated about arbitrary axes which,

in this case, were their zero axes. Since these arbitrary axes are not

necessarily the correct axes about which to integrate, an integration

constant correction had to be made to give the integration results, 2_

and _ curves, their correct slopes. It is assumed in the case of a

symmetrical missile that at the time the normal-force coefficient CN

is equal to zero the angle of attack _ is also equal to zero. The

curve is then corrected for this assumption by integrating & about

the corrected axis. This assumption holds for the side-force coeffi-

cient Cy and the angle of sideslip _, in that Cy = 0 when _ = 0,

and then the _ curve is corrected by integrating _ about the cor-

rected axis. The resulting Lk_ and _ curves are plotted, respectively,

with CN and Cy, and their slopes are the normal-force-curve slope CN2_

and the side-force-curve slope b_y_. An example of a typical variation

of CN with _ and Cy with _ for model i is shown in figure 9.

Even though the integration does not give the exact numerical values

of _ and _, it provides a suitable value for the determination of

the normal-force-curve slope CN_ and the side-force-curve slope Cy_

referred to as CN_ and Cy_, respectively).

The pitching-moment coefficient Cm and the yawing-moment coeffi-

cient Cn were calculated by using the following relationships:

: (e-

and

Cn: +
\/qAFd

where the pitch acceleration e and the yaw acceleration _ were

obtained by differentiating the @ and @ curves with respect to time.

The resultant quantities of Cm and Cn were then plotted against CN

and Cy. The average slopes of these curves were measured to obtain a
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dCm dCn
value of and --. The center of pressure or aerodynamic-center

dCN dCy

location in percent of body length is calculated by using the equation:

or

c,p°

c°p,

The method employed to extract the stability derivatives from the

oscillations of these models is described in detail in reference 5. In

this method it is assumed that the models are symmetrical, that they

have a constant trim point, and that the rate of roll is constant. The

cross plot of CN and Cy is utilized to determine the stability roots
which are the basic oscillation frequency mo, the nonrolling damping

constant ho, the damping constant due to roll _, and the component

of the total pitch frequency resulting directly from roll _. In all

cases Z_0 was determined from the average roll rate for each pulse by

using equation 16 of reference 5 where _ = p - . The stability

roots were calculated for both model 1 and model 2 and are presented in

"table II. The method presented in reference 6 was also incorporated in

the data reduction, and these results are also shown. By using the

following equations, Cmq and Cm_ can be determined:

and

I(q-_--dF_) 57.3C_c_II )

ab 2 + ho 2 - _A 2

m

Ixl

\ 2I/

57.SCN_CmqqAFd

2mV 2
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Values measured for CN_ by the previous method maybe comparedwith
values determined by using the following equation which utilizes the
stability roots computedfrom the cross plots of CN and Cy

] T
-

In order to reduce the data by the method of reference 5, a constant

trim point had to be selected for each pulse, and from this point the

resultant coefficient CR was determined. The trlmpoints for each

pulse of model 1 were located at some small value of +C N and +Cy to

indicate that the model had a trim level at some small resultant angle

of attack. Similarly, for model 2, a constant trim point was selected

for each pulse, but in this case the trlmpoint was at a higher +C N

and +Cy position and indicated that the model trimmed at a higher

resultant angle of attack. This trim position remained in the same

cross-plot quadrant throughout the flight, with the resultant angle-of-

attack magnitude decreasing with decreasing Mach number_ especially in

the fifth and sixth pulses.

The data from the separation pulse and the first pulse of model 2

could not be completely determined. Observation of the telemeter record

indicates that the booster rocket motor interfered with the model flight

during separation up to the flight time of 3.9 seconds. The remaining

portion of this separation disturbance was not long enough for good

analysis, and because of the early firing of the second pulse rocket,

the disturbance from the first pulse rocket was too short for any anal-

ysis; therefore, the stability roots could not be determined from these

two model disturbances.

A comparison of the cross plots of figures 7 and 8 with similar

cross plots of reference 5 shows that at no time during the test flight

2zo
did the models approach a resonant condition, where - 1.O. Through-

ab

out the flights of both models the roll rates were small, and the greatest

h_
value of -- was of the order of 0.2.

_o

The results of the data analysis are presented in figures i0 to 16.
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RESULTS AND DISCUSSION

ii

Induced Roll

When a symmetrical missile is at some angle of attack the asymmetrical

flow about the missile can impart an induced roll to the configuration.

In order to establish the amount of roll induced into the configuration,

the rates of roll of the two test models were measured and the time his-

tories of the roll rates are included in figures 7 and 8. In the design

of these models the pulse rockets were placed to fire normal to and

through the center line of each model, but because of construction tol-

erances the pulse rockets could be slightly misalined to produce a roll

at the time of firing; therefore, at the beginning of each pulse the

model had some roll, either positive or negative. Any increase in the

roll rate after the pulse rocket had finished firing could be considered

as being induced by configuration or flow asymmetries. When observing

the roll-rate time histories of figures 7 and 8 it is noted that there

is no constant roll buildup in any one direction, which signifies that

roll induced by the configuration asymmetries is small; therefore, it

is assumed that the majority of the roll-rate increase with time, posi-

tive or negative, would be induced by the flow asymmetries. A decrease

of the roll rate probably would be caused by the roll damping of the

configuration, but an increase probably would signify aerodynamically

induced roll. In all cases the roll rate is low and any change due to

induced roll, that is, increasing roll magnitude either positive or

negative, is small. In general, these configurations with the long rec-

tangular fins of very low aspect ratio showed little induced roll, and

the model of highest fineness ratio and longest fin chord exhibited the

least amount.

Normal- and Side-Force-Curve Slopes

The variation with Mach number of the normal-force-curve slope and

the side-force-curve slope for models i and 2 is presented in figure lO(a)

and lO(b), respectively. Also included in figure i0 are some referenced

test data for a model similar to model i and for body-alone tests for

tangent-ogive-nose-eylinder afterbody models with overall fineness ratios

of 12 and 18. Theoretical calculations from reference 7 for similar con-

figurations are also presented as a check on the validity of the test

data.

The CN_ and CyA _ points for each model show no appreciable

difference, other than scatter, between the overall CN_ and Cy_ levels

and thus indicate that the symmetrical-model assumption is valid; therefore,

under this assumption, CNLk_ = Cy_ and one line is shown faired through
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the scattered CN_ and Cy_ points to represent the variation of the
normal-force-curve slope with Machnumber. The faired line of model I
for CN_ comparesfavorably with the theoretical calculations, but that
of model 2 has an unfavorable comparison in that the theoretical curve
is ii to 16 percent higher than the faired values of the calculated
points. These data for model 2 could be expected to be of a higher value
because cross plots of model 2 showthat the model trimmed at high values
of CN and Cy and, therefore, indicate the trim to be at someangle
of attack other than zero, which according to the normal-force-curve
characteristics of this type of configuration would increase the CN_
to the value corresponding to the trim _ugle of attack.

Another meansof calculating CNa explained in "Presentation of
Data and Method of Analysis" utilizes the stability roots presented in
table II. The results of this calculation are also tabulated in table II.
By comparing these values with those of figure l0 it can be noted that
the calculated values for model 1 are slightly lower but comparefavorably
with the plotted values, but for model 2 they vary considerably. These

dCm
CN_ values are dependent on the values, that are presented in the

dC N

"Center of Pressure" section, and any appreciable change in dCm would

dCN

change CN . The CNa values of figure l0 are the values referred to

herein unless otherwise noted.

A CN_ test point from reference 8 for a model 14 body diameters

long having 4 fins 5 diameters long and a total span of 1.5 diameters

is used for comparison with model i. This point is slightly lower in

magnitude but presents a good comparison when it is considered that

only 4 fins are involved. A visual comparison between data for similar

models of references 8 and 9 with 4 and 6 fins was made, and it was

noted that the model with 6 fins had an increase in CN_ of about

8 percent over the model with 4 fins; therefore, with a similar increase

to the referenced point, the comparison shown in figure i0 would be

even better.

The body-alone data of references i0 and ii are presented herein

as an aid in calculating the theoretical values of CN_ for both models

and to show the increment of normal force contributed by the fins and

the fin-body interference. By comparing the body-alone data with the

test data it can be seen that a considerable increase in CN_ is
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realized by adding these fins of very low aspect ratio to each of the

bodies having fineness ratios of 12 and 18.

Finally, in comparing models i and 2 with each other it is shown

that by increasing the length of the afterbody and fins of model i

6 body diameters and thereby increasing the actual fin area approxi-

mately 115 percent increases the CN_ , based on body cross-sectional

area, 40 to 55 percent over the comparable Mach number range.

Period and Damping of the Longitudinal Oscillation

The period of the longitudinal oscillation of models i and 2 through-

out the test Mach number range is presented in figure ii. Each symboled

point shown in the figure is the average period for each pulse and was

obtained from the time-history oscillation of the resultant coefficient

calculated from the cross plot of CN and Cy by the method of ref-

erence 5. The period curve of model 2 increases sharply at the low test

Mach numbers, but it is not known whether model i shows this trend or

not as no data were available at these Mach numbers. At comparable Mach

numbers, the period of model 2 is approximately one-half that of model i.

The exponential damping constant _o for models i and 2 is pre-

sented in figure 12. The symboled points represent the data that were

derived from the envelope of the resultant coefficient as explained in

reference 5. Along with the data of model i are a few check points

determined, whenever possible, by the method employed in reference 6.

In comparing these two methods, a good agreement is in evidence for the

few points checked. The damping data for model 2 above a Mach number

of 2.6 were unobtainable because of the difficulties explained previously.

The damping factor increases with an increase in Mach number, and model 2

shows a considerable increase over that of model i.

The dynamic damping derivative Cmq is a direct function of the

damping factor, and its variation with Mach number is shown in figure 13.

As can be seen by both figure 12 and figure 13 the damping of model i is

low, but by adding 6 diameters of length to the body and fin chord and

thereby approximately doubling the area of the fins, the damping is con-

siderably increased throughout the test Mach number range.

Static Stability

The static stability derivative Cm_ is plotted against Mach num-

ber and presented in figure 14 for bothmodels. These curves were

derived by the equation shown in "Presentation of Data and Method of
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Analysis" by using the stability roots given in table II. These plots

show that the static stability of model 2 is much higher than that of

model I. The largest quantities in the calculation of Cm_ are the

oscillation frequency and the exponential damping factor, and, since for

model 2 these quantities are quite high, the derived values of the static

stability can become quite large also and thereby show a large increase

in static stability for this model over that of model i. This large

increase can possibly be attributed to the increase in fin area, most

of which is behind the center of gravity.

Center of Pressure

The Cm and Cn values were determined from calculations made by

the method given in "Presentation of Data and Method of Analysis" and

plotted against CN and Cy, respectively. The resulting slopes

dCm dCn
and represent the static margin of the missile or the dis-

dCN dCy

tance from the center of pressure to the center of gravity, and these

slopes are plotted against Mach number in figure 15(a) for models i

dCm dCn
and 2. Each symboled point represents either or -- over the

dC N dCy

time of one pulse, and the dashed line represents the faired average of

these points over the Mach number range. These average values were used

to calculate, by the method discussed previously, the CN_ values that

are given in table II. By utilizing the Cm_ values from figure 14

and the CN_ values from figure i0 a comparison of -- is made with
CN_

the data in figure 15(a). The --Cm_ of model I compares favorably with

CN_

dCm dCn

the dC N and dC--_ values, but for model 2 the comparison is not as

good.

The results of figure 15(a) are transformed into a ratio of center-

of-pressure location to body length and presented in figure 15(b).

Included in this figure is the center of pressure calculated from the

theory of reference 7. The data of model 1 compare very well with the

theory, but the data of model 2 show a center-of-pressure location

somewhat forward of the predicted theory. The center of pressure of
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d%
models i and 2 calculated from

dCN

out the test Mach number range.

and
dC n

dCy
is fairly constant through-

Minimum Drag

The variation of the minimum-drag coefficient with Mach number is

presented in figure 16 for both models. The test points shown were

determined from the polars of the longitudinal-force coefficient CX

and the resultant-force coefficient CR, where CR = _CN 2 + C_. Since

these models were assumed to be symmetrical, the minimumpoint was taken

to be the point at which the resultant-force coefficient equalled zero.

In some cases, particularly in the case of model 2, the polar curve had

to be extrapolated to CR = 0 because of the large minimum value of CR;

consequently, the accuracy of the drag curve for model 2, even though the

polars were fairly flat, would not be as good as that of model i.

Included in the figure is the drag obtained from the helium-gun test of

the scale model of model i. A comparison of the drag of models i and 2

shows that model 2 had approximately 14 to 33 percent more drag than

model i between the Mach numbers of 2 and 3- This increase in drag was

mainly skin-friction drag due to the increased wetted area caused by

elongating the body and increasing the fin area.

CONCLUSIONS

Two rocket-propelled missiles have been test flown in order to study

the stability characteristics of a body with six rectangular fins of

very low aspect ratio. The fins had aspect ratios of 0.04 and 0.02 and

were mounted on bodies which had fineness ratios of 12 and 18, respec-

tively. Each of the bodies had a nose with a fineness ratio of 3.5 and

a cylindrical afterbody. The tests covered the Math number range of

1.4 to 3.2.

From these tests the following conclusions have been made:

i. These configurations with the long rectangular fins of very low

aspect ratio showed little induced roll, and the model of highest fine-

ness ratio and longest fin chord exhibited the least amount.

2. Increasing the length of the afterbody and fins of the shorter

model 6 body diameters and thereby increasing the actual fin area

approximately 115 percent increases the CNa , based on body cross-

sectional area, 40 to 55 percent over the comparable Mach number range.
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3- Lengthening the body and fins and thereby increasing the fin

area increases the damping and, consequently, the dynamic stability by

a substantial amount.

4. The center of pressure of each model is fairly constant through-

out the test Mach number range.

5. Increasing the wetted area by elongating the body and fins

increased the drag from 14 to 33 percent between Mach numbers of 2 and 3.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., October i, 1958.
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TABLE I.- NOSE COORDINATK5

X r

0

•060

•122

.245

.480

.735

1.225
2.000

2.45o
4 •8oo

7.350
8. ooo

0.168

•182

•210

.224

.294

.35o

.462

•639

.735

i. 245

1.721

i .849

9.8oo

12.25o

13.125

14.575

14.700

17.15o

19.600

22 •050

24.5oo

25.000

2.155

2.505
2.6o8

2.747

2.785

3.OlO

3.220

3.385

3.5oo

3.500

6
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TABLE II.- VALUES OF STABILITY ROOTS AND CN_

_etermined by method of reference

Pulse _o _o 2_o _A M CN_

Model i

18.59" -2.39*
Separation 5.21

-1.88"

First 14.88 -2.050 -3.22 0.182 2.92 0.i01

Second 14.16 -1.346 -1.84 -0.385 2.72 0.103

Third 13.13 -1.182 -2.97 -0.112 2.57 0.096

-1.12"

Fourth ii. Ii -1.176 -1.29 0.043 2.40 0.084

-0.910"

Fifth 10.42 -.907 -2.08 0.098 2.17 0.105

Sixth 9.03 -0.716 -1.27 0.087 1.96 0.119

Model 2

Separation 33.9 2.86

First ...... 2.67

Second 28.25 -6.075 1.166 1.195 2.54 0.260

Third 22.10 -3.620 -2.540 2.28 0.225

Fourth

Fifth

Sixth

19.38

10.87

6.53

-2.887

-1.57o

-0.804

-4.31o

0.600

1.012

o.233

o

o

2.O0

i. 61

1.41

o.280

0.206

o.138

Values obtained by using method of reference 6.
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